

Mikroskopie am Rechner

Eine KLEINE Einführung

Disclaimer

- Der Spaß an der Mikroskopie steht hier im Vordergrund, nicht die Wissenschaft
- Etliche Begriffe werden hier bestimmt komisch/falsch/... verwendet. Bitte Ergänzungen/Kommentare abgeben, damit der Vortrag möglichst "korrekt" bereitgestellt werden kann.

Vergrößerung (Durchschauen)

"Bresser Mikroskop-Set 40x – 1024x": Okular 16x

Barlow-Linse (1x bis ca. 1,6x)

Objektiv 4x, 10x, 40x

Das 1024x oder "1024-fach" bezieht sich immer auf das menschliche Auge!

"100x größer als 25cm entfernt vom Auge"

CC-BY-2.5 User:Tomia

Vergrößerung (mit Kamera

CC-BY-2.5 User:Tomia

- Die Okularkamera wird anstatt der Barlow-Linse und des Okulars in das Mikroskop eingeführt.
- Relevant sind nun nur noch:
 - Betrachtungsabstand
 - Auflösung der Kamera
 - Größe der Kamerapixel
 - Objektiv
- Ein x-Fach macht keinen Sinn (kein Auge), daher Größenangaben ins Bild einbringen.

Größenangaben bestimme

 "Calibration slide" sind spezielle Objektträger mit winzigen Skalen, auch aus China noch arg teuer (8 EUR).

Und welche Größen kann man sehen?

Und welche Größen kann man sehen?

Objekte bis runter auf 5µm lassen sich noch gut betrachten.

Das obige Bild hatte im Original 1920px Breite

Präzision der Okularkamer

- Dieser Ausschnitt zeigt aus dem vorigen Bild den Ausschnitt zwischen zwei "10µm-Strichen". Es ist noch 126 Pixel breit.
- Jeder Pixel löst damit in der Breite ca. 10µm/126 = 79.37nm auf. Allerdings sieht man bereits am Bild oben, dass die Schärfe und Farbabgrenzung nicht mehr 100%ig gegeben ist.

Und wie klein ist das?

- 1m 10cm 1cm 1mm 100µm 10µm 1µm 100nm 10nm 1nm 0,1nm

 - 1nm: DNA; 0.1nm: Goldatome

Grafik von André Lampe, 34C3 "Es sind die kleinen Dinge im Leben II"

Tipp: Mikroskop "falschrum

- Das hat den Vorteil, dass man den Objektträger nun nach "oben" schieben kann und das Bild auf dem Monitor dasselbe macht (intuitiver)
- Man kommt auch leichter an das zu untersuchende Objekt

Menschliches Haar

Menschliches Haar: Dicke

Paint.Net:

- Skala als Ebene einfügen
- Rotationszoom der Ebene
- Nur °-Zahl und Verschiebung nutzen

Wikipedia sagt: Haardurchmesser 0,04mm bis 0,12mm = 40µm bis 120µm Messung ist plausibel

Was ist das?

Was ist das?

Leseseite einer gepressten CD

Die Pits haben eine Länge von 0,833µm bis 3,054µm und eine Breite von 0,5µm, der Spurabstand ist auf 1,6µm festgelegt.

SMD Bauteil

Software

- MicroManager https://micro-manager.org/
- Fiji (is just) ImageJ https://fiji.sc/
- Von mir verwendet:
 - VLC
 - "Aufnahmegerät öffnen"
 - Aufnehmen mit SHIFT+r, Screenshot mit SHIFT+s
 - GIMP
 - Paint.NET